B.A. /B.Sc. (Computer Applications)

Semester -I			
Course Title	H/V	Week	Credits
	Th	Pr	
Programming in C	4	3	4 + 1 = 5
Semester –II	I	<u> </u>	
Programming in C++	4	3	4+1 = 5
Semester –III			
Relational Data Base	4	3	4+1 = 5
Management Systems			
Semester –IV			
Multi Media Systems	4	3	4+1 = 5
Semester –V			
Mobile Applications	4	3	4+1 = 5
Semester –VI			
Web Technologies	4	3	4+1 = 5

AECC

Semester -I	Hours/Week	Credits
	Th	
Fundamentals of Computer		2
	2	
Semester -II	Hour/Week	
Office Automation	2	2
	SEC	
Semester -III		
Python –I (Sec –I)	2	2
Ci Lab –I (Sec –II)	2	2
Semester -IV		
Python –II (Sec –III)	2	2
Ci Lab –II (Sec –IV)	2	2
Generic Elective (GE)		
Semester -IV		
Information Technologies	4	4
	Project/Optional	
Information Security and	Thr pr	3+1=4

3

Programming in C

3

Semester -I

Theory	4 Hours/Week	4 credits
Practical	3 Hours/Week	1 credit

Unit – I

Computer Fundamentals: Introduction of Computers, Classification of Computers, Anatomy of a Computer, Memory Hierarchy, Introduction to OS, Operational Overview of a CPU.

Program Fundamentals: Generation and Classification of Programming Languages, Compiling, Interpreting, Loading, Linking of a Program, Developing Program, Software Development.

Algorithms: Definitions, Different Ways of Stating Algorithms (Step-form, Pseudo-code, Flowchart), Strategy for Designing Algorithms, Structured Programming Concept.

Basics of C: Overview of C, Developing Programs in C, Parts of Simple C Program, Structure of a C Program, Comments, Program Statements, C Tokens, Keywords, Identifiers, Data Types, Variables, Constants, Operators and Expressions, Expression Evaluation–precedence and associativity, Type Conversions.

Unit – II

Input-Output: Non-formatted and Formatted Input and Output Functions, Escape Sequences, Control Statements: Selection Statements – if, if-else, nested if, nested if-else, comma operator, conditional operator, switch; Iterative Statements–while, for, do-while; Special Control Statement–goto, break, continue, return, exit.

Arrays and Strings: One and Two Dimensional Arrays, Character Arrays, Functions from ctype.h, string.h.

Unit – III

Functions: Concept of Function, Using Functions, Call-by-Value Vs Call-by-reference, Passing Arrays to Functions, Score of Variables, Storage Classes, Inline Functions, and Recursion. Pointers: Introduction, Address of Operator (&), Pointer, Uses of Pointers, Arrays and Pointers, Pointers and Strings, Dynamic Memory Allocation.

Unit – IV

User-Defined Data Types: Declaring a Structure (Union) and its members, Initialization Structure (Union), Accessing members of a Structure (Union), Structures verses Unions, Enumeration Types. Files: Introduction, Using Files, Working with Text Files and Binary Files, Other File Management Functions.

Text Pradip Dey, Manas Ghosh, Computer Fundamentals and Programming in C (2e)

References

With effect from the Academic Year 2019-2020

- **1.** Ivor Horton, Beginning C
- 2. Herbert Schildt, The Complete Reference C
- 3. Paul Deitel, Harvey Deitel, C How To Program
- 4. Byron S. Gottfried, Theory and Problems of Programming with C
- 5. Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language
- 6. B. A. Forouzan, R. F. Gilberg, A Structured Programming Approach Using C

With Effect from the Academic Year 2019-2020

C Lab (Semester –I)

Credit:1

1.Write a program to find the largest two numbers using if and conditional operator.

2. Write a program to calculate arithmetic operations of two numbers using switch.

3.Write a program to print the reverse of a given number.

4. Write a program to print whether the given number is a prime or not.

5. Write a program to find largest and smallest elements in a given list of numbers.

- 6. Write a program to find the sum of two matrices.
- 7 Write a program to find the product of two matrices.
- 8 Write a program to print the reverse of a given string.
- 9 Write a program to find the factorial of a positive integer using iteration and recursion.
- 10 Write a program to find the GCD of two positive integers using iteration and recursion.
- 11 Write a program to demonstrate the call by value and the call by reference concepts.
- 12 Write a program to illustrate the use of Enumeration data type.
- 13 Write a program to illustrate the use of structure concept.
- 14 Write a program to illustrate the use of union concept.
- 15 Write a program to write content into a file and display contents of a file
- 16 Write a program to copy content of one file into another file and display the content of new file.

Note :

Write the Pseudo Code and draw Flow Chart for the above programs.

Recommended to use Open Source Software: GCC on Linux; DevC++ (or) CodeBlocks on Windows 10.

Programming in C++ (Semester-II

Theory	4 Hours/Week	4 credits
Practical	3 Hours/Week	1 credit

Unit – I

Introduction to C++: Applications, Example Programs, Tokens, Data Types, Operators, Expressions, Control Structures, Arrays, Strings, Pointers, Searching and Sorting Arrays.

Functions: Introduction, Prototype, Passing Data by Value, Reference Variables, Using Reference Variables as Parameters, Inline Functions, Default Arguments, Overloading Functions, Passing Arrays to Functions.

Unit – II

Object Oriented Programming: Procedural Programming verses Object-Oriented Programming, Terminology, Benefits, OOP Languages, and OOP Applications.

Classes: Introduction, Defining an Instance of a Class, Why Have Private Members? Separating Class Specification from Implementation, Inline Member Functions, Constructors, Passing Arguments to Constructors, Destructors, Overloading Constructors, Private Member Functions, Arrays of Objects, Instance and Static Members, Friends of Classes, Member-wise Assignment, Copy Constructors, Operator Overloading.

Unit – III

With Effect from

Inheritance: Introduction, Protected Members and Class Access, Base Class Access Specification, Constructors and Destructors in Base and Derived Classes, Redefining Base Class Functions, Polymorphism and Virtual Member Functions, Abstract Base Classes and Pure Virtual Functions, Multiple Inheritance. C++ Streams: Stream Classes, Unformatted I/O Operations, Formatted I/O Operations.

Unit - IV

Exceptions: Introduction, Throwing an Exception, Handling an Exception, Object-Oriented Exception Handling with Classes, Multiple Exceptions, Extracting Data from the Exception Class, Re-throwing an Exception.

Templates: Function Templates–Introduction, Function Templates with Multiple Type, Overloading with Function Templates, Class Templates – Introduction, Defining Objects of the Class Template, Class Templates and Inheritance.

Text

Tony Gaddis, Starting out with C++: from control structures through objects (7e) the Academic Year 2019-2020

References

B. Lippman, C++ Primer Bruce Eckel, Thinking in C++ K.R. Venugopal, Mastering C++ Herbert Schildt, C++: The Complete Reference Bjarne Stroustrup, The C++ Programming Language Sourav Sahay, Object Oriented Programming with C++

With the Effect from the Academic Year 2019-2020

C++ Lab (Semester –II)

	Practical	3Hours/Week	1 credit
1	Write a program to print the sum of digits	of a given number	
2	Write a program to check whether the giv	en number is Armstrong or not	
3	Write a program to check whether the giv	en string is Palindrome or not	
4	Write a program to read student name, rol	l no, marks and display the same usir	ig class and object.
5	Write a program to find area of a rectangl	e, circle, and square using class and c	bject.
6	Write a program to implement inline func a. Finding the area of a square b. Finding the area of a cube	tion inside and outside of a class for	
7	Write a program to implement friend func	tion and friend class	
8	Write a program to implement constructor	and destructor with in a class.	
9	Write a program to demonstrate hierarchie	cal inheritance.	
10	Write a program to demonstrate multiple	nheritances.	
11	Write a program to demonstrate the const	ructor overloading.	
12	Write a program to demonstrate static pol	ymorphism.	
13	Write a program to demonstrate dynamic	polymorphism.	
14	Write a program to implement polymorph	ism using pure virtual functions.	
15	Write a program to demonstrate the funct	on templates and class templates.	
16	Write a program to demonstrate exception	handling using try, catch, and finall	<i>J</i> .

Note :

Recommended to use Open Source Software: GCC on Linux; DevC++ (or) CodeBlocks on Windows.

Model Question Paper

3 Hours

PART -A

Answer any eight questions in part –A	8X4 M = 32 Marks
UNIT-I 1	
2	
3	
UNIT-II 4	
5	
6	
UNIT-III 7	
8	
9	
UNIT- IV 10	
11	
12	
Part – B <u>Answer all Questions 12MX4 = 48 Marks</u>	
Part – BAnswer all Questions 12MX4 = 48 MarksUNIT- I13	
UNIT-I 13	
UNIT- I 13 Or	
UNIT- I 13 Or 14	
UNIT- I 13 Or 14 UNIT- II 15	
UNIT- I 13 Or 14 UNIT- II 15 Or	
UNIT-I 13 Or 14 UNIT-II 15 Or 16	
UNIT- I 13 Or 14 UNIT- II 15 Or 16 UNIT- III 17	
UNIT- I 13 Or 14 UNIT- II 15 Or 16 UNIT- III 17 Or	
UNIT- I 13 Or 14 UNIT- II 15 Or 16 UNIT- III 17 Or 18	

Credits -4

Max Marks -80

B.A./B.Sc. (Computer Applications)

Practical Question Paper

3 Hours

Credits -I

Max Marks -50

Answer any Two

15MX2 = 30 MARKS

- UNIT I 1 Program
- UNIT- II 1 Program
- UNIT-III 1 Program
- UNIT -IV 1 Program

Viva - 10 Marks

Record – 10 Marks

B.Sc. (Computer Science)

Semester -I			
Course Title	H	l/Week	Credits
	Th	Pr	
Programming in C	4	3	-4+1=5
Semester –II	1		1
Programming in C++	4	3	4+1 = 5
Semester –III			
Data Structures using C++	4	3	4+1 = 5
Semester –IV			
Data Base Management Systems (DBMS)	4	3	4+1 = 5
Semester –V			
Programme in Java	4	3	4+1 = 5
Semester –VI			
Web Technologies	4	3	4+1 = 5

CBCS Pattern in Semester System - 2019

AECC

Semester -I	Hours/Wee	k	Credits
	Th		
Fundamentals of Computer			2
	2		
Semester -II	Hour/Week		
			2
Office Automation	2		2
	SEC		
Semester -III			
Python –I (Sec –I)	2		2
Operating Systems (Sec –II)	2		2
Semester -IV			
Python –II (Sec –III)	2		2
Operating Systems (Sec –IV)	2		2
Generic Elective (GE)			
Semester -IV			
Information Technologies	4		4
Project/Optional			
Semester -VI			
PHP with MY SQL	Thr	pr	3+1=4
	3	3	

Programming in C Semester -I

Theory	4 Hours/Week	4 credit
Practical	3 Hours/Week	1 credit

Unit – I

Computer Fundamentals: Introduction of Computers, Classification of Computers, Anatomy of a Computer, Memory Hierarchy, Introduction to OS, Operational Overview of a CPU.

Program Fundamentals: Generation and Classification of Programming Languages, Compiling, Interpreting, Loading, Linking of a Program, Developing Program, Software Development.

Algorithms: Definitions, Different Ways of Stating Algorithms (Step-form, Pseudo-code, Flowchart), Strategy for Designing Algorithms, Structured Programming Concept.

Basics of C: Overview of C, Developing Programs in C, Parts of Simple C Program, Structure of a C Program, Comments, Program Statements, C Tokens, Keywords, Identifiers, Data Types, Variables, Constants, Operators and Expressions, Expression Evaluation–precedence and associativity, Type Conversions.

Unit – II

Input-Output: Non-formatted and Formatted Input and Output Functions, Escape Sequences, Control Statements: Selection Statements – if, if-else, nested if, nested if-else, comma operator, conditional operator, switch; Iterative Statements–while, for, do-while; Special Control Statement–goto, break, continue, return, exit.

Arrays and Strings: One-dimensional Arrays, Character Arrays, Functions from ctype.h, string.h, Multidimensional Arrays.

Unit – III

Functions: Concept of Function, Using Functions, Call-by-Value Vs Call-by-reference, Passing Arrays to Functions, Score of Variables, Storage Classes, Inline Functions, and Recursion. Pointers: Introduction, Address of Operator (&), Pointer, Uses of Pointers, Arrays and Pointers, Pointers and Strings, Pointers to Pointers, Array of Pointers, Pointer to Array, Dynamic Memory Allocation.

Unit – IV

User-defined Data Types: Declaring a Structure (Union) and its members, Initialization Structure (Union), Accessing members of a Structure (Union), Array of Structures (Union), Structures verses Unions, Enumeration Types.

Files: Introduction, Using Files in C, Working with Text Files, Working with Binary Files, Files of Records, Random Access to Files of Records, Other File Management Functions.

Text	Pradip Dey, Manas Ghosh, Computer Fundamentals and Programming in C (2e)
References BOOKS	Ivor Horton, Beginning C Ashok Kamthane, Programming in C Herbert Schildt, The Complete Reference C Paul Deitel, Harvey Deitel, C How To Program Byron S. Gottfried, Theory and Problems of Programming with C Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language B. A. Forouzan, R. F. Gilberg, A Structured Programming Approach Using C

With Effect from the Academic Year 2019-2020

C Lab	Semester -I
-------	-------------

	Practical	3 Hours/Week	1 credit
1	Write a program to find the largest tw	vo (three) numbers using if and co	nditional operator.
2	Write a program to print the reverse of	of a given number.	
3	Write a program to print the prime nu	mber from 2 to n where n is given	n by user.
4	Write a program to find the roots of a	quadratic equation using switch s	statement.
5	Write a program to print a triangle of * ***	stars as follows (take number of l	ines from user):

	*****	***	
6	Write a program to find largest and se	mallest elements in a given list of	numbers.
7	Write a program to find the product of	of two matrices	
8	Write a program to find the GCD of t	wo numbers using iteration and re	ecursion.
9	Write a program to illustrate use of st	orage classes.	
10	Write a program to demonstrate the c	all by value and the call by referen	nce concepts.
11	Write a program that prints a table in entered as command line arguments.	dicating the number of occurrence	s of each alphabet in the text
12	Write a program to illustrate use of d	ata type enum.	
13	Write a program to demonstrate use of	of string functions string.h header	file.
14	Write a program that opens a file and	counts the number of characters i	n a file.
15	Write a program to create a structure Total Marks. Create 10 students and		No., Name, Class, Year and
16	Write a program that opens an existin letters changed to capital letters and a		ext file with all lowercase

Note Write the Pseudo Code and draw Flow Chart for the above programs. Recommended to use Open Source Software: GCC on Linux; DevC++ (or) CodeBlocks on Windows 10.

Programming	in C+	+ Semester -II
1 10 Stanning		

Theory	4 Hours/Week	4 credits
Practical	3 Hours/Week	1 credit

Unit – I

Introduction to C++: Applications, Example Programs, Tokens, Data Types, Operators, Expressions, Control Structures, Arrays, Strings, Pointers, Searching and Sorting Arrays.

Functions: Introduction, Prototype, Passing Data by Value, Reference Variables, Using Reference Variables as Parameters, Inline Functions, Default Arguments, Overloading Functions, Passing Arrays to Functions. Object Oriented Programming: Procedural and Object-Oriented Programming, Terminology, Benefits, OOP Languages, and OOP Applications.

Unit – II

Classes: Introduction, Defining an Instance of a Class, Why Have Private Members? Separating Class Specification from Implementation, Inline Member Functions, Constructors, Passing Arguments to Constructors, Destructors, Overloading Constructors, Private Member Functions, Arrays of Objects, Instance and Static Members, Friends of Classes, Member-wise Assignment, Copy Constructors, Operator Overloading, Object Conversion, Aggregation.

Unit – III

Inheritance: Introduction, Protected Members and Class Access, Base Class Access Specification, Constructors and Destructors in Base and Derived Classes, Redefining Base Class Functions, Class Hierarchies, Polymorphism and Virtual Member Functions, Abstract Base Classes and Pure Virtual Functions, Multiple Inheritance.

C++ Streams: Stream Classes, Unformatted I/O Operations, Formatted I/O Operations.

Unit – IV

Exceptions: Introduction, Throwing an Exception, Handling an Exception, Object-Oriented Exception Handling with Classes, Multiple Exceptions, Extracting Data from the Exception Class, Re-throwing an Exception, Handling the bad_alloc Exception.

Templates: Function Templates-Introduction, Function Templates with Multiple Type, Overloading with Function Templates, Class Templates - Introduction, Defining Objects of the Class Template, Class Templates and Inheritance, Introduction to the STL.

Text	Tony Gaddis, Starting out with C++: from control structures through objects (7e)
References	B. Lippman, C++ Primer Bruce Eckel, Thinking in C++ K.R. Venugopal, Mastering C++ Herbert Schildt, C++: The Complete Reference Bjarne Stroustrup, The C++ Programming Language Sourav Sahay, Object Oriented Programming with C++

With Effect from the Academic Year 2019–2020

1 credit

C++ Lab Semester -II

3 Hours/Week

1 Write a program to.

a. Print the sum of digits of a given number.

Practical

b. Check whether the given number is Armstrong or not

c. Print the prime number from 2 to n where n is natural number given.

Write a program to find largest and smallest elements in a given list of numbers and sort the given 2 list.

Write a program to read the student name, roll no, marks and display the same using class and object.

Write a program to implement the dynamic memory allocation and de-allocation using new and delete operators using class and object.

Write a program to find area of a rectangle, circle, and square using constructors.

5

6 Write a program to implement copy constructor.

- 7 Write a program using friend functions and friend class.
- 8 Write a program to implement constructors

§ Default Constructor, Parameterized Constructor, Copy Constructor

- § Define the constructor inside/outside of the class
- § Implement all three constructors within a single class as well as use multiple classes(individual classes)

Write a program to implement the following concepts using class and object

§ Function overloading

§ Operator overloading (unary/binary(+ and -))

Write a program to demonstrate single inheritance, multilevel inheritance and multiple inheritances.

Write a program to implement the overloaded constructors in inheritance.

Write a program to implement the polymorphism and the following concepts using class and object.

§ Virtual functions

§ Pure virtual functions

Write a program to implement the virtual concepts for following concepts

- § Constructor (not applied)
- § Destructor (applied)

Write a program to demonstrate static polymorphism using method overloading.

Write a program to demonstrate dynamic polymorphism using method overriding and dynamic method dispatch.

Write a program to implement the template (generic) concepts

§ Without template class and object

§ With template class and object

Write the Pseudo Code and draw Flow Chart for the above programs.

Recommended to use Open Source Software: GCC on Linux; DevC++ (or) CodeBlocks on Windows.

Credits -4

Max Marks -80

Model Question Paper

3 Hours

PART -A

Answer a	ny eight quest	ions in part –A	8X4 M = 32 Marks
UNIT- I	1		
	2		
	3		
UNIT- II	4		
	5		
	6		
UNIT- III	7		
	8		
	9		
UNIT- IV	10		
	11		
	12		
]	Part – B	Answer all Questions 12MX4 = 48 Marks	
UNIT- I	13		
	Or		
	14		
UNIT- II	15		
	Or		
	16		
UNIT- III	17		
	Or		
	18		
UNIT- IV	19		
UNIT- IV	19 Or		

B.Sc. (Computer Science)

Practical Question Paper

3 Hours

Credits -I

Max Marks -50

Answer any Two

15MX2 = 30 MARKS

- UNIT I 1 Program
- UNIT- II 1 Program

UNIT-III 1 Program

UNIT -IV 1 Program

Viva - 10 Marks

Record – 10 Marks